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Message transmission: an abstraction

! K transmit antennas sending messages

! Message is a signal xk ∈ S ⊂ CK carried on antenna k

1 bit 2 bits 4 bits

! Each message is equiprobable

! Message requires energy E[|xk |2]
! Can scale the constellation S



Impairments to transmitted signal

! L receive antennas

! Channel gain from transmit antenna k to receive antenna l is
Hlk

! Received signal:
y = Hx + z

! H ∈ CL×K , z ∈ CL

! H: random - iid entries distributed as CN(1), but realisation
learnable at the receiver

! z : random - CN(IL)

! x : random - equiprobable in the message set with
E[‖x‖2] ≤ P (battery life versus performance)

! Same constellation on each antenna ⇒ E[|xk |2] ≤ P/K = p.



How do these impairments arise

Random H with iid CN(1) entries:

! Arises because of scattering and many multipaths, with no
dominant contribution from a single path

! No direct line of sight path

! If direct line of sight, mean is nonzero – also of interest, but
not considered here

Random z : Receiver thermal noise in the receiving antenna



I: Receiver problem - MMSE

! Given y and H, process it and identify x

! Test each hypothesis for x , pick the most likely one (after
having observed y and H). Exponential complexity. Want
simpler receivers

! E.g., A linear receiver that minimises mean squared error
(MMSE)

ρ := min
M∈CK×L

E
[

‖x −My‖2 | H
]

Questions:
Find the argmin Mopt. It can depend on H.
Find ρ



The solution

Proposition:

! Mopt = p H∗ [IL + pHH∗]−1,

! ρ = p tr
{

(IL + pHH∗)−1
}

.

Observations:

! One random environment H. The optimal receiver can depend
on H.

! Scaling very natural for the problem:

ρ =
P

K

K
∑

k=1

1

1 + Pλk

(

H∗H

K

)

! Just a scaled Stieltjes transform evaluated at a point.



Proof steps: standard fare in estimation

! If x were Gaussian, the best estimate is E[x |y ], a linear
estimate.

! Even otherwise, look for the best estimate within the affine
family (Wiener-Kolmogorov filtering)

! Projection of x onto the affine family

! Let E[x ] = 0. Then

Mopt = (E[xy∗]) (E[yy∗])−1

= pH∗ [IL + pHH∗]−1

! MMSE (ρ) evaluation is by direct substitution.



The Marcenko-Pastur law

Theorem: Let LK be the ESD of H∗H/K , and LK its expectation.
The entries are iid, zero mean, with variance 1 and bounded fourth
moments. Let L/K → β. Then

LK
P→ µMP

LK → µMP

Proof: The tough exercise via Stieltjes transforms with the
antidiagonal trick that I didn’t do.

The law µMP has generalised density

fβ(x) = (1− β)+ δ(x) +

√

(x − a)+(b − x)+

2πx

where a = (1−
√
β)2 and b = (1 +

√
β)2.

Observations: Mass at 0 and bounded support



II : CDMA for Code division multiple access

! K mobiles, each having a message to transmit
! The message xk for the mobile k is “spread” over L symbols
! Transmit xk [H1k H2k . . . HLk ] in the L symbols (signature)
! Superposition:

y =
K
∑

k=1











H1k

H2k
...

HLk











xk + z = Hx + z

The twist: Hlk randomly picked from ±1 with equal probability,
independent of all others. Then normalised.

! Receiver informed (pseudo noise random bit generator)
! Helps hide information if seed is not known
! Use MMSE again. The same as the previous problem, with

expectation over H as well.



III: The best code and Shannon capacity

Code across time and exploit the law of large numbers. (Shannon
1948)

! y(t) = H(t)x(t) + z(t), for t = 1, 2, . . . ,T .

! For now, fix H(t) = H, fixed for all t, known.

! Code: Messages are {1, 2, . . . ,M}. Each message maps to a
position that the transmitter takes.

w )→ x(w) ∈ (CK )T

! Noise corrupts this and receiver gets corrupted y ∈ (CL)T .

! Receiver should make probability of error arbitrarily small.

! What is log2 M (bits per T symbols)? What is the rate
T−1 log2 M? Maximum asymptotic rate? (Capacity)?



The scalar case H ∈ C: K = L = 1

! Noise vector concentrates with a radius
√
T

! All noise spheres around message points disjoint

! All noise spheres are within radius
√

T (|H|2P + 1) (Near
orthogonality)

! M ≤
α2T

(√
T (|H|2P+1)

)2T

α2T (
√
T)2T

= (1 + |H|2P)T

! Yields rate is at most T−1 logM ≤ log(1 + |H|2P).
! Can show that this is indeed achievable



Multiple antennas?

Theorem: Let {H(t)} is stationary and ergodic. Let H denote
H(1). Under sufficient regularity on this process, the capacity per
transmit antenna is given by

CK = E
[

K−1 log det(IL + pHH∗)
]

= E

[

K−1
K
∑

k=1

log

(

1 + Pλk

(

HH∗

K

))

]

for a scenario where receiver knows H(·) and transmitter knows
only its distribution. The unit is bits/symbol/antenna.



Evaluation

For Gaussian entries and finite K :

! Density ∝ ∆(λ)2 exp{−
∑

i
λi}

∏

i
λ|K−L|
i

! Laguerre polynomials play the role of Hermite polynomials

! pλ1(λ1) =
1
m

∑

m

i=1 φi (λ1)2λ
|K−L|
1 e−λ1 .

! Enables evaluation.

Asymptotic case as K → ∞, we have

CK =

∫ ∞

0
log(1 + Pλ) dLK (λ) →

∫ ∞

0
log(1 + Pλ) dµMP(λ).

log(1 + ·) is not bounded, but exploit monotonicity and concavity.
See a later slide.



IV: The random environment case

! Design a code with a certain rate R .

! Encounter a random environment H.

! Can have a failed transmission with probability

Pr

{
∫

log(1 + Pλ) dLK (λ) < R

}

= Pr

{

K−1
K
∑

k=1

log

(

1 + Pλk

(

HH∗

K

))

< R

}

.

For this to converge to 0, need convergence in probability to a
constant c , and R < c − ε.



Convergence in probability
Theorem: Let ξK =

∫

log(1 + Pλ) dLK (λ). Then

ξK
P→ c =

∫

log(1 + Pλ) dµMP(λ).

Proof: There is a common prob. space where LK → µMP a.s.
(Skorohod). Consider the good set.
Let λ(K) be according to prob. measure LK with distribution FK .
Let GK be distribution of h(λ(K)) := log

(

1 + Pλ(K)
)

.

ξK =

∫

g dGK (g) =

∫

[1− GK (g)]dg =

∫

[1− FK (h
−1(g))]dg

=

∫

[1− FK (λ)]h
′(λ) dλ

Apply BCT and (FK → F a.e) to get ξK → c a.s.
So ξK → c in distribution, which also holds in the original space.
Convergence in distribution to a constant implies convergence in
probability.



Variations

! Fluctuation result:

Pr

{

K
∑

k=1

log

(

1 + Pλk

(

HH∗

K

))

< Kc − u

}

→ Φ(u;σ2)

! y = HAx + z , where A is a diagonal matrix. Correlations
introduced.

! H = UrHwU
∗
t

! Instead of KX = (P/K )IK , can tune KX to H, if transmitter
also has knowledge of the channel condition. This is not
absurd in some cases.
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