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Message transmission: an abstraction

» K transmit antennas sending messages

» Message is a signal x, € S C CK carried on antenna k

1 bit 2 bits 4 bits

» Each message is equiprobable
» Message requires energy E[|x|?]

» Can scale the constellation S



Impairments to transmitted signal

» [ receive antennas

v

Channel gain from transmit antenna k to receive antenna / is
Hik

Received signal:

v

y=Hx+z

v

He CkK et

H: random - iid entries distributed as CN(1), but realisation
learnable at the receiver

z: random - CN(/;)

v

v

» x: random - equiprobable in the message set with
E[[|x]|?] < P (battery life versus performance)

» Same constellation on each antenna = E[|x¢|?] < P/K = p.



How do these impairments arise

Random H with iid CN(1) entries:

» Arises because of scattering and many multipaths, with no
dominant contribution from a single path
> No direct line of sight path

> If direct line of sight, mean is nonzero — also of interest, but
not considered here

Random z: Receiver thermal noise in the receiving antenna



. Receiver problem - MMSE

» Given y and H, process it and identify x

» Test each hypothesis for x, pick the most likely one (after
having observed y and H). Exponential complexity. Want
simpler receivers

> E.g., A linear receiver that minimises mean squared error
(MMSE)
= min Ef|x—My|?|H
pi=,,min Ellx—My|*|H]
Questions:

Find the argmin M. It can depend on H.
Find p



The solution

Proposition:
> Mope = p H* [l + pHH*] ™,

> p=p tr{(//_ + pHH*)_l}.

Observations:

» One random environment H. The optimal receiver can depend
on H.

» Scaling very natural for the problem:

S

k=1

x| o

&)

» Just a scaled Stieltjes transform evaluated at a point.



Proof steps: standard fare in estimation

» If x were Gaussian, the best estimate is E[x|y], a linear
estimate.

» Even otherwise, look for the best estimate within the affine
family (Wiener-Kolmogorov filtering)

» Projection of x onto the affine family
» Let E[x] =0. Then

Mopt = (E[y*]) (Elyy*]) ™
= pH*[IL+ pHH*]

» MMSE (p) evaluation is by direct substitution.



The Marcenko-Pastur law

Theorem: Let Lk be the ESD of H*H/K, and Ly its expectation.
The entries are iid, zero mean, with variance 1 and bounded fourth

moments. Let L/K — (3. Then

P
Lk — pwmp
Lk — pwmp

Proof: The tough exercise via Stieltjes transforms with the
antidiagonal trick that | didn’t do.

The law ppp has generalised density

x—a)yt(b—x)*t

21X

fa(x) = (1= B)" a(x) + U
where a = (1 — /B)? and b = (1+ /B)>.

Observations: Mass at 0 and bounded support



Il : CDMA for Code division multiple access

» K mobiles, each having a message to transmit

» The message xx for the mobile k is “spread” over L symbols
» Transmit xx[Hix Hak ... Hik] in the L symbols (signature)
» Superposition:

Hik
K| Hax
y = Xk +z=Hx+z
k=1 :
Hik
The twist: Hy, randomly picked from 41 with equal probability,
independent of all others. Then normalised.

» Receiver informed (pseudo noise random bit generator)

» Helps hide information if seed is not known

» Use MMSE again. The same as the previous problem, with
expectation over H as well.



lIl: The best code and Shannon capacity

Code across time and exploit the law of large numbers. (Shannon
1948)

» y(t) = H(t)x(t) + z(t), for t =1,2,..., T.
For now, fix H(t) = H, fixed for all t, known.

v

v

Code: Messages are {1,2,...,M}. Each message maps to a
position that the transmitter takes.

w— x") e (Cf)T

v

Noise corrupts this and receiver gets corrupted y € (CL)T.

v

Receiver should make probability of error arbitrarily small.

What is log, M (bits per T symbols)? What is the rate
T~ !log, M? Maximum asymptotic rate? (Capacity)?

v



Thescalarcase He C:. K=L=1

» Noise vector concentrates with a radius v/ T

v

All noise spheres around message points disjoint

All noise spheres are within radius \/ T(|H|>P + 1) (Near

orthogonality)
aor ( T(\H|2P+1)>2T
» M < 2T
a7 (VT)
Yields rate is at most T~!log M < log(1 + |H|?P).

Can show that this is indeed achievable

v

= (L+|HPP)T

v

v



Multiple antennas?

Theorem: Let {H(t)} is stationary and ergodic. Let H denote
H(1). Under sufficient regularity on this process, the capacity per
transmit antenna is given by

Ck = E[K 'logdet(l + pHH")]

K_lilog <1+P)\k<H:*>>

k=1

E

for a scenario where receiver knows H(-) and transmitter knows
only its distribution. The unit is bits/symbol/antenna.



Evaluation

For Gaussian entries and finite K:
» Density oc A(M)?exp{—>_; M} 1, A'K .
» Laguerre polynomials play the role of Hermite polynomials

K—L| _
» oy (M) =13, ¢i()\1)2)\|1 e,
» Enables evaluation.

Asymptotic case as K — o0, we have

CK = /OOO Iog(l + P)\) de()\) — /OOO Iog(l + P)\) d,uMp()\).

log(1 + -) is not bounded, but exploit monotonicity and concavity.
See a later slide.



IV: The random environment case

» Design a code with a certain rate R.
» Encounter a random environment H.

» Can have a failed transmission with probability

Pr{/log(1+ PX) dLk(\) < R}
= pr{K—lglog <1+P)\k (HZ» < R}.

For this to converge to 0, need convergence in probability to a
constant ¢, and R < ¢ —¢.




Convergence in probability
Theorem: Let £k = [log(1 + PA) dLk(X). Then

tx Bc= /Iog(l + PA) dump()).

Proof: There is a common prob. space where L — pyp a.s.
(Skorohod). Consider the good set.

Let A(F) be according to prob. measure Lx with distribution F.
Let Gk be distribution of A(A(K)) := log (1 + PAK)).

o = [gd6nle)= 11— Gelellde = [11— Ficlh(e)lok

_ /[1 — FH () dA

Apply BCT and (Fx — F a.e) to get {k — c a.s.

So £k — c in distribution, which also holds in the original space.
Convergence in distribution to a constant implies convergence in
probability.



Variations

Fluctuation result:

Pr {ZK:Iog (1 + Pk (H}g)) < Kc — u} — O(u; 0?)
k=1

v

» y = HAx + z, where A is a diagonal matrix. Correlations
introduced.

» H=UH,U;

» Instead of Kx = (P/K)lk, can tune Kx to H, if transmitter

also has knowledge of the channel condition. This is not
absurd in some cases.
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